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Dr. Musa O. Abdalla 

 

 

ABSTRACT 

 

One of the challenging issues in Fuzzy system design is generating the rule-base, 

which is essentially the control strategy of a system. Traditionally, the construction of 

Fuzzy Logic controller rules has been mainly based on the operator‟s control experience 

or actions. Unfortunately, acquiring rules from experts is not an easy task, moreover it is 

very difficult for a knowledge engineer to extract rules from static data bases. On the 

other hand, selecting a set of important fuzzy rules from a given rule base is an important 

issue in fuzzy rule-base modeling. 

  

In this work, a novel Fuzzy Logic controller design methodology is presented. The 

method utilizes the Particle Swarm Optimization binary search algorithm to generate the 

output outcomes in a Fuzzy Logic controller rule base without human experience 

intervention, as a first optimal screening. In addition, the proposed method utilizes 

Particle Swarm Optimization algorithm to simplify the rule-base of the Fuzzy Logic 

controller, as a second screening.  

 

The proposed technique is compared with the well established Lyapunov based 

Fuzzy Logic controller design in generating the rules. The proposed method generated 

superior system output results with shorter rule-base list. 

Finally, the controller‟s effectiveness and performance are tested, verified and 

validated using a gearless traction elevator control application. The novel controller‟s 

results are compared with traditional Proportional, Integral and Derivative controller and 

classical Fuzzy Logic controller, the proposed controller showed superiority in 

controlling the elevator system based on different control standards.   
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CHAPTER 1 
 

 

Introduction 
 

 

 

Fuzzy based controllers‟ designs did not stop since Zadeh established the basis for fuzzy 

sets in 1965 and approximate reasoning in (1975), which was closely followed by the 

industrial implementation of Mamdani‟s work (1974). 

Currently, Fuzzy controllers found their way to many commercial products, due to their 

effectiveness yet simplicity in design. Small survey to the market place will reveal the 

existence of fuzzy controller in many appliances, such as: washing machines, refrigerators, 

microwave ovens …etc. Personal items such as digital cameras, toys, inverted pendulum 

based scooters …etc. Military and automotive applications, such as: automatic gear boxes, 

smart guided missiles, aircraft control …etc.  

In this work, a Fuzzy Logic (FL) PID controller is proposed; to aid in solving elevators 

control for the ever increasing transportation in high rise buildings.   

  

1.1 Fuzzy Logic  PID Controller 

 

Literature survey of Fuzzy Logic (FL) based controllers reveals three main directions of 

design. These directions are presented in some details in the subsequent sections, which may 

be listed as: Direct control Action (DA), Feed Forward Compensator scheme (FFC) and Gain 

scheme. For Gain Scheduling (GS) type controllers, Antonio (1999) presented a novel method 

based on the fuzzification of the set-point weight for the tuning of the PID controller. A fuzzy 
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inference system was used to determine the value of the weight that multiplies the set-point 

for the proportional action depending on the current output error and its derivative. This 

method is done by added the output of the fuzzy module to a constant parameter resulting in a 

coefficient that multiplies the set-point. The parameters of the PID are tuned using the 

Ziegler-Nichols method. Fuzzy module parameters can be tuned by hand or by means of an 

auto tuning procedure based on GA.  Woo, et al. (2000) presented a method to tune the 

scaling factors of the PID type Fuzzy controller on line based on to the system error 

information. The PID type Fuzzy controller can be decomposed into the equivalent 

proportional, integral and derivative control coefficients. The new method adjusts the input 

scaling factor corresponding to the integral coefficient of the PID-type FL controller keeping 

the proportional controller component not to change too much so as to guarantee quick 

reaction against the error. The simulation shows a good performance of the proposed method. 

Visilio (2001) presented a comparison between different methodologies, in which fuzzy logic 

is used to determine the parameters of the PID controller also with a Fuzzy PID-like 

controller, in which the control variable is determined directly by means of a fuzzy inference 

system. GA was used to tune the parameters of the fuzzy inference system. Simulation shows 

that the set-point weighting technique appears superior to the other methodologies. 

Bandyopadhyay, et al. (2001) proposed a new fuzzy-genetic technique for autotuning the PID 

controller making the error zero for the next sampling instant as indicated by the format of 

dead-beat control. The fuzzy inference mechanism which is based on Takagi-Sugeno model 

was used to determine the expected value of the controller output, while GA was used to 

derive the rule base. Simulation results showed the superiority of this algorithm.  
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  Guzelkaya, et al. (2003) used the same method used above to adjust the input and the 

output scaling factors. They proposed a new method for tuning the parameters of PID-type FL 

controller by using the error and the rate information of the system response together. The 

fuzzy module that adjusts the related coefficients has two inputs one of which is called 

„normalized acceleration‟ which gives the relative rate information and the second input is the 

classical error. The output of the fuzzy module is determined as follows: when the system 

response is slow, the derivative effect of the PID-type FL controller must decrease, and when 

the error is small and the system response is fast, the derivative effect of the PID-type FL 

controller must increase, through simulation, which are done on the second order system with 

varying parameters and delay time, the new self tuning algorithm was compared to other 

tuning methods. Simulation shows that the new method is more efficient with lower number 

of parameters to be tuned and it is more robust to the system parameter changes than other 

methods. Kazemian (2005) presented the development and tuning methods for a novel self-

organizing Fuzzy PID controller. In the first tuning method, the fuzzy inference readjusting 

the gains of the PID controller individually, while in the second tuning method the fuzzy 

inference readjusting the proportional PID gain and using the Ziegler-Nichols method to 

determine the required values of the other two gains. The results of the step input experiments 

for the Fuzzy PID controller and the self-organized Fuzzy PID controller are the same for both 

methods. The results of the step input show a superiority of the novel self organizing Fuzzy 

PID controller over the Fuzzy PID controller and the conventional PID controller.  

For DA type Fuzzy PID controller, James, et al. (2000) proposed a design for a new 

Fuzzy PID controller, with its control performance evaluation and stability analysis having a 
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capability of controlling some known nonlinear systems. All possible combinations 

corresponding to the three different input components were viewed as a cube divided into 

forty eight sectors to construct the deffuzzification rules. Simulation results showed the 

effectiveness of the controller for nonlinear and linear systems. Georg, et al.  (2001) proposed 

evaluating different PID controller structures. The structures were evaluated in terms of two 

levels of tuning. The first level tunes the nonlinear PID gains and the second level tunes the 

linear gains in addition to the scaling factors. A greater flexibility and better functional 

properties were achieved by using the decoupled rule and one input rule structures. In the next 

paper Georg proposed a new tuning method based on two-level tuning strategy for tuning 

Fuzzy PID controllers. Tang, et al. (2001) proposed an optimal Fuzzy PID controller. The 

conventional analog PI+D controller was discretized by applying the bilinear transform, then 

designed the Fuzzy PI and the Fuzzy D controllers separately, and finally combined them 

together. The plane was divided into twenty regions for both PI and D controllers to construct 

the deffuzzification rules. Multi-objective GA was used to optimize the gains of the Fuzzy 

PID controller. An example is given to show that the proposed controller is suitable for 

controlling the nonlinear plants. 

Hybrid type of Fuzzy PID controllers is a combination of DA and GS types. Isin, et al. 

(2006) designed a new hybrid Fuzzy PID controller by suggesting a combination between the 

classical PID and Fuzzy PID controller in a blending mechanism that depends on a certain 

function of actuating error. The proposed hybrid Fuzzy PID controller is anticipated to 

generate a better simulation results when compared to the pure classical PID controller or the 

pure Fuzzy controller applications. 
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1.2 Lyapunov Synthesis Approach  

 

Many methods have been investigated on the stability of Fuzzy control systems. Buhar 

and Leephakpreeda (1994) have applied describing function methods to evaluate the stability 

of Fuzzy control systems. The Lyapunov‟s stable method is one of the most useful tools for 

handling the stability problems. Based on this method, Michael and Gideon (1999) presented 

a new method, based on extending the classical Lyapunov synthesis method to the design of 

Fuzzy controllers. Chaio-Shiung (2001) presented a systematic procedure to analyze and 

design a stable Fuzzy controller for a class of nonlinear systems. Changjin (2002) proposed a 

novel approach to design stable Fuzzy controller with perception based information using 

fuzzy arithmetic based Lyapunov synthesis in the frame of computing with words. Petr, et al. 

(2003) presented a constructive and automated method for the design of a gain scheduling FL 

controller based on Lyapunov method and convex optimization. Gang (2003) proposed a kind 

of controller synthesis based on a piecewise smooth Lyapunov function. Bong-Jae and 

Sangchul (2006) presented anew fuzzy Lyapunov function approach for the stability analysis 

and the Fuzzy controller synthesis of a class of the continuous time Takagi-Sugeno Fuzzy 

control system. Tiejun, et al. (2007) proposed two novel stable fuzzy model predictive 

controllers based on piecewise Lyapunov functions and the min-max optimization of a quasi-

worst case infinite horizon objective function. Jeng, et al. (2007) presented a new FL 

controller for discrete time systems based on Lyapunov stability criterion. Kaushik, et, al. 

(2009) proposed a new approach for designing stable adaptive Fuzzy controllers, which 
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employs a hybridization of a conventional Lyapunov theory based approach and a particle 

swarm optimization (PSO) based stochastic optimization approach.  

 

1.3 Particle Swarm Optimization (PSO) Synthesis Approach 

 

Particle Swarm Optimization (PSO) is a population-based stochastic optimization 

technique developed by Eberhart and Kennedy (1995), Cui, et al. (2004) described a swarm 

based FL controller mobile sensor network approach for collaboratively locating the 

hazardous contaminants in an unknown large scale area.  

Wahsh, et al. (2005) used the PSO technique to tune the parameters of the PI-controller for 

control of permanent magnet synchronous motor. Gao and Tong (2006) proposed a novel PID 

controller tuning and on-line tuning approach based on the PSO to design robust PID 

parameters by transforming the problems of PID controller into correspondent optimization 

problems. Kao, et al. (2006) presented a novel design method for the self-tuning PID control 

in a slider-crank mechanical system. Ermanu, et al. (2007) presented power system stabilizer 

design based on optimal PD and PI Fuzzy controller. Allaoua, et al. (2008) proposed the 

application of Fuzzy Logic for DC motor speed control using Particle Swarm Optimization. 

Elwer and Wahsh (2009) presented a modern approach for speed control of a PMSM using the 

PSO algorithm to optimize the parameters of the PI-controller. (Bingul and Karahan, 2010) 

controlled a 2 DOF planar robot by FL controller tuned with a PSO. 
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1.4 Elevator Control Strategies 
 

 

Many studies were carried out in controlling the elevator systems. (Kang, et al., 2000) 

proposed a new strategy to reduce the vertical vibration of the left car while keeping high 

speed control and as a result improve the efficiency of riding elevators. Both experimental 

evaluation and computer simulation proved the feasibility of this strategy. Mannan, et al. 

(2001) proposed an electro-hydraulic system for the control of an elevator with twin cylinders 

that are located on each side of the elevator car. A PD Fuzzy controller is applied to velocity 

control, where as a constrained step PD controller guarantee the minimum non-synchronous 

error between the motions of two cylinders. Sha, et al (2002) introduced an approximation 

linear model for a hydraulic elevator that includes an improved dynamic friction model and 

investigated a sliding mode control for velocity tracking in the discrete domain. Simulation 

experiments showed that this approach offers an effective and improved solution for the 

hydraulic elevator control. Huayong, et al. (2004) studied the computational simulation and 

experimental research on the variable voltage variable frequency (VVVF) hydraulic elevator 

speed control. The research results provided a theoretical basis for the design and application 

of the VVVF hydraulic elevator. Kim, et al. (2005) proposed a two-stage non-linear robust-

controller, using the Lyapunov redesign method to control the velocity of the hydraulic 

elevator. Zhou, et al. (2008) introduced a hybrid backup power system, including batteries, 

ultra capacitors and hydrogen fuel cells in order to get a reliable and effective continuous 

function elevator in spite of power failure caused by any reason.    
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CHAPTER 2 

 

Fuzzy Logic in a Nutshell 
 

 

 

2.1 Introduction 

 

In this chapter, Fuzzy logic is presented in an informal way. Only the main bold lines of 

this relative new science are presented, Abdalla (2009). The reader is directed for a more well 

established references for a complete treatment of the subject. The development of fuzzy set 

theory was initiated by Zadeh, who discovered the existence of fuzzy sets and proposed it in 

his seminal paper “Fuzzy sets”, Zadeh (1965). Seven years later, he proposed the basic idea of 

Fuzzy Logic (FL) controller, Zadeh (1972, 1973).
 
In the next year, the first industrial 

implementation of a FL controller was reported by Mamdani and Assilian (1974). Today, 

Fuzzy Logic Controllers can be found in a growing number of products, from washing 

machines to speedboats, which range from air condition units to hand-held auto focus 

cameras. The motivation is often that the fuzzy set theory provides an alternative design 

approach to the traditional modeling and design of control systems, this is especially more 

effective when system knowledge and the dynamics of the system, in the traditional sense, are 

uncertain and time varying.    

Humans use approximate reasoning to draw vital conclusions. For example, humans use 

their eyes to approximate or estimate distances while driving, yet their controller (brain) 

regulate the speed and path following and other functions in a remarkable way! Such things 
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had triggered a complete process of design approaches not based on system‟s model but 

instead it utilizes established experience. Researchers and designers started to believe if 

humans can take vital decisions based on non-precise data why not machines! 

The tricky part of these eccentric approaches was to have the ability to capture this type 

of logic and reasoning in a rigorous mathematical manner. Actually, Zadeh (1965) succeeded 

in proposing a new way of perception based on non-conventional logic, he later called it 

Fuzzy Logic (FL). In classic logic things are on two extremes: either True or False, which was 

inherited from the Greeks and other civilizations. The drawback of such reasoning was 

apparent, that is an event may not be True and False at the same time. But if one carefully 

studies human behavior he/she will soon come to the conclusion that humans use 

contradictory remarks to the conventional logic. An example on that would be pattern 

clustering; a classification based on height will trigger many human‟s linguistic words, such 

as: vary tall, tall, kind of medium, medium, not too short, short… etc. While classic or 

conventional logic fails to address all these human accepted variations, suddenly a more need 

of a new type of logic was arising. Also, from a control point of view the sudden change in the 

classification was not accepted, that is in conventional logic the transition between tall and 

short (i.e. only two possibilities), a person classification would change over a night or after 

putting on his shoes! Even though the digital world has succeeded in implementing the 

classical logic but when it comes to control this non-smooth transition becomes a major 

barrier in the implementation. 

Consequently, Zadeh‟s reasoning was very simple yet very powerful, which maybe 

simply put why not consider other shades of truthiness. That is why not to be true and at the 
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same time false, or in a mathematical sense, the truthiness must be in the range [0, 1]. It turns 

out that these shades may solve the human like mystery of approximate reasoning.  

It actually enables us to address human confusing linguistic terms such as “somewhat tall “, 

which implies tallness and shortness in a mixed manner! On the other hand, smooth transition 

of classifications may be created to address the need for controller designs. Figure 1 illustrates 

the height concept in a human perception based way. Such graphs are called membership 

functions because they represent the degree of belonging of a certain element to a set, in this 

case the height set.  

 

Figure 1. Classification logic of human height 

 

In classical logic this belonging (i.e. membership) of an element is simply {0, 1}. That 

is it either part of the tall set {1} or it is not {0}. However, different shades [0,1] may be used 

in the fuzzy logic approach! Mathematically speaking, in classic set theory, a subset “A” of 

set X can be defined by its characteristic function XA as a mapping from the elements of X to 

the elements of the set {0,1}, 

XA : 𝑥  →  {0,1} 
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And the truthiness of a statement like “𝑥 is in A” is determined by the ordered pair (𝑥, XA(𝑥)). 

Similarly, in fuzzy logic the mapping is performed through membership functions on the 

range [0, 1],  

𝜇𝐴  : 𝑥  → [0, 1] 

 

Where X and A are fuzzy sets. Also, in the previous statement truthiness is determined by the 

ordered pair (𝑥, 𝜇𝐴 (𝑥)). Where 𝜇𝐴(𝑥)  reflects the degree of membership or belonging of 

element 𝑥 in fuzzy set A for each 𝑥 є X. Hence, the A set may be completely described by 

 

                                          𝐴 = {(𝑥, 𝜇𝐴 𝑥 : 𝑥𝜖𝑋}                                (1) 

 

2.2 Fuzzy Sets 

 

Conventional set theory was originally developed by George Cantor (1845-1918). Later 

Zadeh and others extended most of the fuzzy set theories in a rigorous mathematical way to 

resemble the complete classical set theory. Elements of a fuzzy set are taken from a universe 

of discourse, or simply universe. This universe contains all the elements that come into 

consideration. For example the universe for a sensor is basically the collection all possible 

readings from that sensor. 

On the other hand, every element in the universe is a member of the fuzzy set to some 

grade, could be zero (no belong) or one (totally belong). The function that generates this grade 

of belongness or no belongness is the membership function 𝜇(𝑥), which could be continuous 

or discrete. In fuzzy based control this function is preferably continuous, normalized and 
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convex. Finally, similar to an algebraic variable in taking numbers as values, linguistic 

variables take words or sentences as values in Fuzzy Logic (Zadeh, 1975 and Zimmermann, 

1993). 

For an example, let x be a linguistic variable for height, one may define the set of words 

(terms) for the linguistic variables, which are fuzzy sets, to be something like 

T= {very tall, tall, medium, short, very short}. Actually, each term is a fuzzy variable, which 

is clearly depicted in Figure 2. 

 

Figure 2. The fuzzy sets for the height example 

 

2.3 Operations on Fuzzy Sets 

 

The new definition of a fuzzy set, which differ from the concept of a classic or crisp set, 

has entailed new approaches for the operations on fuzzy sets. Consider the fuzzy sets A and B 

in the universe U,                           

                                              A = {(𝑥, 𝜇𝐴(𝑥))} ,  𝜇𝐴(𝑥) ∈ [0,1]                             (2)              

           B = {(𝑥, 𝜇𝐵(𝑥))} ,  𝜇𝐵(𝑥) ∈ [0,1]      (3)  
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The operations with A and B are defined on fuzzy sets by means of their membership 

functions  𝜇𝐴(𝑥) and  𝜇𝐵(𝑥), correspondingly. Here is a short review of these operations;   

 Equality: The fuzzy sets A and B are said to be equal and are denoted by A=B if and only 

if for every 

     𝑥 ∈ U,  

                                                          𝜇𝐴(𝑥) =  𝜇𝐵(𝑥)                                                (4) 

 

 Inclusion: The fuzzy set A is included in the fuzzy set B denoted by               , if for         

every 𝑥 ∈ U,  𝜇𝐴(𝑥) ≤  𝜇𝐵(𝑥). Then A is called a subset of B. 

 

 Proper Subset: The fuzzy subset A is called a proper subset of the fuzzy set B denoted by               

 when A is a subset of B and A ≠B that is: 

 

 𝜇𝐴(𝑥) ≤  𝜇𝐵(𝑥) for every 𝑥 ∈ U, 

   𝜇𝐴(𝑥) <  𝜇𝐵(𝑥) for at least one 𝑥 ∈ U 

 

 Complementation: The fuzzy sets A and A  are complementary if 

 

                                             𝜇𝐴  𝑥 = 1 − 𝜇𝐴(𝑥)                                          (5) 

 

 Intersection: The operation intersection of A and B is denoted as A∩B and is defined by: 

 

                                    𝜇𝐴∩𝐵 𝑥 = min 𝜇𝐴 𝑥 , 𝜇𝐵 𝑥  , 𝑥 ∈ U                                 (6) 
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 Union: The operation union of A and B is denoted as A∪B and is defined by:     

 

                                    𝜇𝐴∪𝐵(𝑥) = max 𝜇𝐴 𝑥 , 𝜇𝐵 𝑥  , 𝑥 ∈ U                            (7) 

 

 Difference: The operation difference is denoted by A-B and is defined by: 

 

                                          𝜇𝐴−𝐵 𝑥 = min 𝜇𝐴 𝑥 , 𝜇𝐵  𝑥                                    (8) 

 

On the other hand, a linguistic modifier is an operation that modifies the meaning of a 

term. The intensification modifiers such as very and extremely (or very very), and dilution 

modifiers such as somewhat (or more less), slightly and greatly are the most frequently used 

modifiers. The intensification modifiers can be given in the following form 

                                           𝑖𝑛𝑡 𝜇 𝑥 = 𝜇𝑛(𝑥)                                          (9) 

 

Where 𝑖𝑛𝑡 refers to an intensification modifier with 𝑛 ≥ 2. The value of 𝑛 = 2 in the 

case the modifier very and 𝑛 = 3 for the modifier extremely. Dilution modifiers have a similar 

definition equation, except that the power is inverted 

                                            𝑑𝑖𝑙 𝜇 𝑥 = 𝜇
1

𝑛 (𝑥)                                         (10) 

 

The value of 𝑛 = 2 in the case of the modifier somewhat, 𝑛= 3 in the case of the modifier 

slightly and 𝑛 = 1.4 for greatly. These values are typically argued for in the literature. 

However, other values are also possible. 
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2.4 Fuzzy Logic Operations 

 

Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory to deal with 

reasoning that is approximate rather than accurate. In contrast to "crisp logic", where binary 

sets have binary logic, fuzzy logic variables may have a truth value that ranges between zero 

and one and is not constrained to the two truth values of classical propositional logic. 

Fuzzy connectives are used to join simple fuzzy propositions to make compound 

propositions. Negations (~), disjunctions (∪), conjunctions(∩), and implications (⇒) are 

widely used as fuzzy connectives.  

A fuzzy implication is a generalization of the classical two-valued fuzzy logic. In 

literature, there is three important classes of fuzzy implication operators; S-implications, R-

implications and t-norm implications. Their basic definitions are enlisted for reference.  

 

 S-implications: It is given as 

 

                                                        𝑥 ⇒ 𝑦 ≡ (𝑆 𝑛 𝑥 , 𝑦 )                                        (11) 

 

Where 𝑆 is a t-conorm and n is a negation on [0,1]. Typical examples of S-implications are the 

Lukasiewiez and Kleene-Dienes implications, see Table 1.  

 

 t-norm implications: if T is a t-norm then 𝑥 ⇒ 𝑦 = 𝑇(𝑥, 𝑦). Typical examples of t-norm 

implications are the Mamdani and Larsen implications, see Table 1. 
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 R-implications: these are obtained by residuation of the continuous t-norm T, that is                                

𝑥 ⇒ 𝑦 ≡ 𝑠𝑢𝑏 𝑧 ∈  0,1  𝑇 (𝑥, 𝑧) ≤ 𝑦}                                 (12) 

 

Typical examples of R-implications are the Go del and Gains implications, see Table 1.  

 

The most often used fuzzy implications operators are shown in Table 1, (Abdalla, 2009). 

These implications range from simple definitions to more complicated ones. The diversity is 

arising from the author‟s effort to satisfy all the classical logic situations. However, in control 

theory simpler definitions mean easier in the implementation. 

Table 1. Fuzzy implication operators 

Name Definition 

Early Zadeh 𝑥 ⇒ 𝑦 = max{1 − 𝑥, min 𝑥, 𝑦 } 

Lukasiewiez 𝑥 ⇒ 𝑦 = min{1,1 − 𝑥 + 𝑦} 

Mamdani 𝑥 ⇒ 𝑦 = min{x, y} 

Larsen 𝑥 ⇒ 𝑦 = 𝑥𝑦 

Standard Strict 𝑥 ⇒ 𝑦 =  
1  if 𝑥 ≤ 𝑦

    0  otherwise
     

Go del 𝑥 ⇒ 𝑦 =  
1  if 𝑥 ≤ 𝑦

    𝑦  otherwise
     

Gaines 
𝑥 ⇒ 𝑦 =  

1  if 𝑥 ≤ 𝑦
    𝑦/𝑥  otherwise

     

Kleene-Dienes 𝑥 ⇒ 𝑦 = max{1 − 𝑥, y} 

Kleene-Dienes-Lukasiewiez 𝑥 ⇒ 𝑦 = 1 − 𝑥 + 𝑥𝑦 

Yager 𝑥 ⇒ 𝑦 = 𝑦𝑥  
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2.5 Fuzzy Inference 

 

The process of drawing conclusions from existing data is called inference. A system of 

fuzzy IF-THEN rules is considered as a knowledge base system where inference is made on 

the basis of three rules of inference; compositional of inference, modus ponens and 

generalized modus ponens.  

Zadeh (1975) introduced the compositional rule of inference that plays the most 

important role in approximate reasoning. Fuzzy conditional statements in the form: IF A then 

B denoted by A ⇒B with the fuzzy sets A (antecedent) and B (consequent), which may be 

considered as fuzzy relations.  

In conventional logic, reasoning is based on “modus ponens” (deduction) and “modus 

tollens” (induction). The two mechanisms are contrasted in Table 2. 

                        

Table 2. Deduction and Induction 
 Deduction Induction 

Rule IF x is A then y is B IF x is A then y is B 

Premise x is A y is not B 

Conclusion y is B x is not A 

 

 

In Fuzzy Logic (FL), the modus ponens and modus tollens are extended to the 

generalized modus ponens and generalizrd modus tollens, respectively.  
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A generalized (fuzzy) modus ponens inference rule is defined by the following 

reasoning scheme:  

Premise 1:  If x is A ⇒ y is B 

                                          Fact: x is A' 

                                          Consequence y is B' 

 

Were A, A', B and B' are all fuzzy sets, and x and y are the so-called linguistic variable. The 

consequence B' is determined as a composition of the fact and the fuzzy implication operator 

                                                     B'=A' о (A → B)                                              (13) 

That is, 

                                B'(𝑣) = 𝑠𝑢𝑝𝑢∈𝑈  { min A', (A → B) (𝑢, 𝑣)} , 𝑣 ∈ 𝑉                (14) 

 

The consequent B' is nothing else but the shadow of A → B on A'. The generalized modus 

ponens, which reduces to classical modus ponens where A'=A and B'=B, is closely related to 

the forward data-driven inference which is particularly useful in the Fuzzy Logic (FL) control. 

A generalized (fuzzy) modus tollens can be written in IF-THEN form as 

 

Premise 1:  If x is A ⇒ y is B 

                                          Fact: y is B' 

                                          Consequence x is A' 
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Which reduces to modus tollens when B=B ' and A'=A , is closely related to the backward 

goal driven inference. The consequence A' is determined as a composition of the fact and 

the fuzzy implication operator  

                                                   A ' = B '  о  (A → B)                                         (15) 

 

Finally, fuzzy inference systems have been successfully applied in fields such as 

automatic control, data classification, decision analysis, expert systems and computer vision. 

Several fuzzy inference systems have been described by different workers but the commonly 

used are Mamdani type (1974) and Takagi-Sugeno type (1985), which is also known as 

Takagi-Sugeno-Kang type.  

The Takagi-Sugeno type is similar to the Mamdani in many respects. The first two parts 

of the fuzzy inference process, i.e. fuzzifying the inputs and applying the fuzzy operator, are 

exactly the same. The main difference between them is that, the output membership functions 

are linear or constant for Takagi-Sugeno type fuzzy inference, where as the output 

membership functions are fuzzy sets for the Mamdani type. 

Mamdani fuzzy inference method is the commonly seen fuzzy methodology, another 

advantages of the Mamdani method is that it is intuitive and well suited to human input. In 

this work, the Mamdani fuzzy inference method will be used. 
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CHAPTER 3 
 

 

Fuzzy Logic Controller Design 
 

 

 

Controller design is one of the most important topics in control theory. The word control 

itself denotes the ability to reshape the dynamical system response (behavior) based on a user 

desired input. Typically, controllers design objectives include: stabilization of unstable 

systems, disturbance rejection, enhancement of performance and beating system‟s uncertainty. 

The Fuzzy Logic (FL) controller objectives are the same, but the difference is in the 

controller‟s design methodology. 

 

3.1 Introduction 

 

Nowadays, there are two schools of thoughts in controller design; the first approach 

depends on enforcing the controller‟s objectives through a model-based design techniques. In 

this method the designer is required to have a functioning mathematical model of the 

dynamical system. The design process could be in the frequency domain, time domain or 

both. Classical control techniques such as PID, Lead Lag …etc controllers perform the design 

in Laplace or frequency domain. However, techniques such as Linear Quadratic Regulator 

(LQR), Linear Quadratic Gaussian (LQG) … etc, carries out the design in the time domain. 

While modern techniques, such as LMI, 𝐻∞  …etc, performs the design in both domains time 

and frequency. Such techniques in both domains start its design process with the model. This 

model could be based on analytical physical analysis of the dynamical system or it could be 
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based on experimental data. Unfortunately, this model could be complex or not even available 

for the designer. 

The second approach forces the controller objectives in a model-less approach. The 

reasoning behind these techniques is simply based on the observation of humans and animals 

ability to function many control tasks without any knowledge of the system‟s model! For 

example human‟s children learn walking (stabilization) by continuous training and transfer of 

knowledge from the parents. Later when children grow, they learn car driving through skills 

transfer. This had triggered the model-less design methodology among researchers and 

engineers, creating Fuzzy Logic (FL) and neural-network control based techniques. These 

techniques do not require the systems mathematical model instead known skills are captured 

through training. 

Actually, according to Takagi and Sugeno (1985), Fuzzy Logic (FL) design approach 

stems out its control ability from three sources : 

 

 Expert experience and control engineering knowledge, such as known rules of thumbs 

operators hand books … etc. 

 Based on operator‟s control action. Capturing someone experience in an abstract way 

(training and observation). 

 Based on learning. Basically, a self organizing controller that extracts a trend or pattern 

using data mining, such as neural-network technique.   
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3.2 Fuzzy Logic Controller Configuration 

 

Fuzzy Logic (FL) controller may directly replace the standard Proportional, Integral and 

Derivative (PID) in the Loop. Figure 3 depicts a direct control action for a tracking system.  

 

Figure 3. Direct control action for a tracking system 

 

 

In this case the FL controller‟s decision is based on the deviation or the error and its rate 

of change. Typically, Fuzzy Logic (FL) direct control scheme may replace the conventional 

PID controller with an intrinsic intelligent added to it. 

Figure 4 depicts the FL controller used as a disturbance compensator in the forward path 

(feedforward control). In this case the FL controller is a complimentary controller and it is 

used to enhance the main controller‟s (could be linear or non linear) control laws. 

 

Figure 4. Fuzzy Logic feed forward compensator scheme 
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Finally, the FL controller may be used to adaptively tune the controller‟s parameters. 

This is known as Gain Scheduling (GS), which is used for the cases were the non-linear plants 

change their operating point (Linearized plants around equilibrium points). Figure 5 illustrates 

the conceptual design of this scheme.  

 

Figure 5. Fuzzy Logic gain scheduling scheme 

 

3.3 Fuzzy PID Controller 

 

The three main Fuzzy Logic controller models are: Mamdani, Sugeno and Tsukamoto 

models. Mamdani‟s Fuzzy Logic controller is the most commonly used Fuzzy Logic 

controller model due to its effectiveness and simplicity. This model expects the output 

membership functions to be fuzzy sets. After the aggregation process, there is a fuzzy set for 

each output variable that needs defuzzification. 

Sugeno model has many similarities to the Mamdani type. In fact the first two parts of 

the fuzzy inference process (fuzzifying the inputs and applying the fuzzy operator) are exactly 

the same. The main difference between the two models is that the output membership 

functions are only linear or constant for the Sugeno model. 
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In Tsukamoto model, the consequent of each fuzzy if-then rule is represented by a fuzzy 

set with a monotonical membership function. As a result, the inferred output of each rule is 

defined as a numeric value induced by the rule firing strength. The overall output is taken as 

the weighted average of each rule‟s output. However, the Tsukamoto fuzzy model is not used 

often since it is not as transparent as either the Mamdani or the Sugeno models. 

In this work, Mamdani Fuzzy Logic controller model is used. A typical Fuzzy Logic 

(FL) controller structure is depicted in Figure 6. According to Lee (1990), a FL controller is 

comprised of four principal components; a fuzzification interface, a knowledge base, an 

inference system and a defuzzification interface.  

 

 

Figure 6. Fuzzy Logic controller internal structure 

 

3.3.1 Fuzzification 

 

 The fuzzification module converts the crisp values of the control inputs into fuzzy 

values, so that they are compatible with the fuzzy set representation in the rule base. The 

knowledge base consists of a data base of the plant. It provides all the necessary definitions of 

the fuzzification process such as membership functions, fuzzy set representation of the input-

output variables and the mapping functions between the physical and the fuzzy domains.  
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One of the most challenging issues in fuzzy systems design is generating membership 

functions for the fuzzy design variables. A quick overview of the most popular membership 

functions is provided here for reference, (Massad, et al., 2008).   

 Triangular membership function 

This is the most popular membership function due to its simplicity and easiness in 

calculations. It is specified by three parameters {a,b,c} as follows: 

 

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑥; 𝑎, 𝑏, 𝑐 =

 
 
 

 
 

0     , 𝑥 < 𝑎
𝑥−𝑎

𝑏−𝑎
    , 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
    , 𝑏 ≤ 𝑥 ≤ 𝑐

0     , 𝑐 ≤ 𝑥  
 
 

 
 

                         (16) 

 

Figure 7. Triangular membership function 

 

As shown in Figure 7, the parameters {a,b,c} with a<b<c determine the x coordinates of the 

three corners of the underlying triangular membership function. 
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 Trapezoidal membership function 

A trapezoidal membership function is specified by four parameters {a, b, c, d} as follows: 

 

𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑 𝑥; 𝑎, 𝑏, 𝑐, 𝑑 =

 
 
 

 
 

0     , 𝑥 < 𝑎
𝑥−𝑎

𝑏−𝑎
    , 𝑎 ≤ 𝑥 ≤ 𝑏

       1    , 𝑏 ≤ 𝑥 ≤ 𝑐
𝑑−𝑥

𝑑−𝑐
   , 𝑐 ≤ 𝑥

0     , 𝑑 ≤ 𝑥  
 
 

 
 

                (17) 

 

 

Figure 8. Trapezoidal membership function 

 

As shown in Figure 8, the parameters {a,b,c,d} with a<b<c<d determine the x coordinates of 

the four corners of the underlying trapezoidal membership function.  

 Gaussian membership function  

A Gaussian membership function can be specified by two parameters {c, 𝜎} 

 

𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑥, 𝑐, 𝜎 = 𝑒−
1

2
 
𝑥−𝑐

𝜎
 

2

                                               (18) 
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A Gaussian membership function is determined completely by c and 𝜎; where c represents the 

membership function‟s center and 𝜎 determines the membership‟s function‟s width. 

 

Figure 9. Gaussian membership function 

 

 Generalized bell membership function 

A generalized bell membership function (or bell membership function) is specified by three 

parameters {a,b,c}  

𝑏𝑒𝑙𝑙 𝑥; 𝑎, 𝑏, 𝑐,  =  
1

1+ 
𝑥−𝑐

𝑎
 
2𝑏                                                     (19) 

Where the parameter b is usually positive. The parameter 𝑐 locates the center of the curve. It is 

also called the Cauchy membership function.  

 

 

 
A

ll 
R

ig
ht

s 
R

es
er

ve
d 

- 
L

ib
ra

ry
 o

f 
U

ni
ve

rs
ity

 o
f 

Jo
rd

an
 -

 C
en

te
r 

 o
f 

T
he

si
s 

D
ep

os
it



www.manaraa.com

28 

 

 
Figure 10. Generalized bell membership function 

 

 

 Sigmoid membership function 

 

A sigmoid membership function is defined by: 

 

𝑠𝑖𝑔 𝑥; 𝑎, 𝑐 =
1

1+exp [−𝑎 𝑥−𝑐 ]
                                                 (20) 

 

Depending on the sign of the parameter 𝑎, the sigmoid membership function  is inherently 

open to the left or to the right. 

 

 

Figure 11. Sigmoid membership function 
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3.3.2 Rule base 
 

 

 Another challenging issue in fuzzy systems design is generating the rule base that is 

essentially the control strategy of the system. There are at least four main sources for 

generating control rules (1998); that is, experience and control engineering knowledge, based 

on the operator‟s control actions, based on a fuzzy model of the process or based on learning, 

and optimization. In this work, the learning optimization approach will be used.  

Fuzzy rules are described in terms of IF-THEN conditions. These rules cover all 

linguistic terms for the required inputs and match them to conclusions: 𝐼𝑓 𝑥 𝑖𝑠 𝐴 𝑡𝑒𝑛 𝑦 𝑖𝑠 𝐵. 

As one can imagine, the more linguistic terms there are for a given universe of discourse 

(crisp input) then the number of inputs greatly affects the size of the rule set.  

In order to determine to what degree a rule applies to the input parameters, a rule‟s firing 

strength may be calculated. There are many methods that can be used to determine the fire 

strength of a rule such as MAX-MIN method (Mamdani‟s approach). The MAX-MIN method 

of determining the fire strength of a particular rule involves taking the degree of membership 

values for each input into the rule. The first strength is then determined by the smallest of the 

fire strengths. Now, for multiple firing of the rules, there are two techniques that are used: 

 Combining the rules: In this technique the rule may be aggregated  

 

𝑅 = 𝑎𝑔𝑔(𝑅1, 𝑅2 , … 𝑅𝑛) 

 

Where connectives and/or must be applied. 
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 Combining the fired outputs: Here the strength of firings are aggregated to generate the 

total output. 

𝐶 = 𝑎𝑔𝑔(𝐶1, 𝐶2, … 𝐶𝑖) 

 

Where 𝐶𝑖  are the corresponding outputs from the i
th

 rule.  

In this work, the output aggregation has been adopted in order to implement the binary 

search optimization algorithm.   

 

3.3.3 Defuzzification 
 

 

 the defuzzification module translates the generated controller‟s fuzzy control actions to 

non fuzzy control actions (crisp) in order to be compatible with the actuator. There are many 

techniques to perform the defuzzification and the most common in practice are enlisted for 

reference. 

 Center of Gravity method 

This method is also referred as the center of area method and this is the most widely used 

defuzzification technique. For the continuous case the defuzzified output value is obtained 

from the overall membership function as follows, (Massad, et al., 2008): 

 

                              𝑢∗ =
∫ 𝑧𝜇  𝑧 𝑑𝑧

∫ 𝜇 𝑧 𝑑𝑧
                                              (21) 
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Where 𝜇(𝑧) is the aggregated overall membership function, 𝑧 is the output quantity. For 

discrete values the difuzzified output is obtained using weighted average method as follows, 

(Massad, et al., 2008): 

                             𝑢∗ =
 𝑧𝑘𝜇 (𝑧𝑘 )𝑛

𝑘=1

 𝜇 (𝑧𝑘)𝑛
𝑘=1

                                         (22) 

 

Where 𝜇(𝑧𝑘) are the k=1,…., n sampled values of the aggregated output membership function. 

 Mean-Max (Middle Of Maxima ) method 

In this defuzzification technique, the average output value is obtained as follows: 

 

                          𝑧∗ =
𝑧1+𝑧2

2
                                                   (23) 

 

Where 𝑧1 is the first value and 𝑧2 is the second value, where the overall membership function, 

𝜇(𝑧), is maximum. 

 First Of Maxima method 

When this defuzzification technique is used, the first value of the overall output membership 

function with maximum membership 𝜇(𝑧) degree is taken. This technique is seldom used. 

 Least Of Maxima method 

Here, the least value of the overall output membership function with minimum membership 

𝜇(𝑧) degree is taken. This technique is also seldom used. 

In this work the Center of Gravity technique is used to obtain the output for discrete 

values, Figure 12 below, (Fuzzy Control System, Wikipedia), demonstrates max-min 

inference and Center of Gravity defuzzification for a system with input variables "x", "y", and 
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"z" and an output variable "n". In Center of Gravity defuzzification the values are OR'd, that 

is, the maximum value is used and values are not added, and the results are then combined 

using a centroid calculation. 

 

Figure 12. Max-min inference and center of gravity defuzzification  

 

3.4  Proportional Integral Derivative (PID) Controller  Overview 

 Conventional Proportional, Integral and Derivative (PID) controllers despite of their 

simplicity and fixed structure design they are still used in the industry. The main challenge 
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faced for these controllers is their tuning. There has been hundreds of proposed methods to 

tune the PID controllers for all sorts of applications, interested readers may consult Technical 

report AOD-00-01 by A. O ‟Dwyer (2001). The popularity of PID controllers is mainly due to 

their good performance and simplicity in design. Actually PID controllers proved their 

existence and capabilities for the past fifty years in industrial applications for linear and 

nonlinear systems. However, other types of controllers should be used for complex systems, 

such as system with time delays, significant oscillatory behavior, parameters variations and 

MIMO plants.  

Basically, the PID controller inherent its ability to enhance system‟s performance from 

its three terms: Proportional (P), Integral (I), and Derivative (D). Figure 13 depicts a typical 

basic PID controller implementation. 

 

 

Figure 13. PID controller structure block diagram 

 

Mathematically, the PID controller takes the following form: 

 

         𝑢 𝑡 = 𝐾𝑃𝑒 𝑡 + 𝐾𝐼 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
+ 𝐾𝐷𝑒 (𝑡)                                       (24) 

e(t) u(t) 
PID 
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Where 𝑒(𝑡) is the system‟s deviation from the user‟s set point as depicted in Figure 14. 

 

Figure 14. PID controller loop 

 

                                      𝑒 𝑡 = 𝑟 𝑡 − 𝑓(𝑡)                                         (25) 

Note that for tracking systems 𝑓 𝑡 = 𝑦(𝑡). 

Even though the PID controller response space is small compared to other types of 

controllers still finding optimal parameters for the PID controller (KP*, KI*, KD*) is truly 

challenging. Unfortunately, even though the classical PID controller is simple in its structure 

but it lacks flexibility and intelligence. To make the PID controller smarter, the Fuzzy based 

PID controller is proposed. Subsequent sections will shed more light on the Fuzzy Logic PID 

controller structure and parameter tuning.   

 

3.5 Fuzzy Logic Based PID Controller  
 

 

Depending on the Fuzzy PID controller‟s structure it may be used to replace, complement or 

tune the PID controller. But in all cases the conventional PID controller‟s performance will be 

boosted. According to Isin et al. (2006), Fuzzy PID controllers maybe classified into three major 

categories as: Direct Action (DA), Gain Scheduling (GS), and Hybrid type Fuzzy PID controllers.  
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In Direct Action (DA) type Fuzzy PID controller, the controller is placed within the 

feedback control loop and the PID actions are determined directly by means of the controller‟s 

fuzzy inference. The DA type can be classified according to the number of inputs as single 

input, double input and triple input DA Fuzzy PID controllers. The DA type is the most 

commonly used Fuzzy PID controller due to the simple features yet effective non-linear 

properties. Figure 15 depicts the configuration of the DA type Fuzzy PID controller. 

The proposed Fuzzy PID controller, that is a combination between the PD type FL 

controller and I control, is illustrated in Figure 15. The Fuzzy Logic controller has two inputs; 

the error and the rate of change of the error. The basic rule base is given by: 

 

𝐸𝐿𝑆𝐸𝑖 ,𝑗  [ IF 𝑒(𝑡) is  𝐸𝑖  and  𝑒 (𝑡)  is  𝐸 
𝐽  then  𝑢  is 𝑈𝑚   ] 

 

The total number of rules is equal to 𝑁1 × 𝑁2. Where 𝑁1 and 𝑁2 are the number of the 

linguistic variables for the error and the rate of change of the error respectively. Input error 

scaling factor is 𝐾𝑒 , error change scaling factor is 𝐾𝑐𝑒  and output scaling factor is 𝐾𝑜𝑢𝑡 . 

Consequently, the Fuzzy controller output is given as 

 

                          𝑢 = 𝐾𝑜𝑢𝑡  [𝐾𝑒𝑒 𝑡 + 𝐾𝑐𝑒𝑒  𝑡 + 𝐾𝑖𝑒 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
]                               (26) 
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Figure 15. Direct Action Fuzzy PID controller 

 

Any Fuzzy PID structure together with its fuzzy knowledge base usually results in 

nonlinear PID actions. The nonlinearity is adjusted by modifying the knowledge base 

parameters (rules, membership functions or support sets). Computational or numerical search 

techniques are commonly used to produce optimum nonlinear controllers using fuzzy 

paradigms.   

In the Gain Scheduling (GS) type of Fuzzy PID controller, conventional control and 

fuzzy computing is combined together in the scheme of fuzzy gain scheduling. Tuning 

parameters of the controller are stored in a fuzzy rule base beforehand, and during control the 

fuzzy system gives suitable parameter gains for the controller. The GS Fuzzy PID controller is 

depicted in Figure 16.  

Typical application for such a controller is the diesel engine. The model for the diesel 

engine is nonlinear and it has different equilibrium points that are function of the angular 

velocity of the engine (rmp). This generates multiple linearized models depending on the 

engine rpm, which make it challenging to tune the PID controller. The Fuzzy controller will 

tune the conventional PID controller on real time based on gain scheduling. 
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Figure 16. Gain Scheduling Fuzzy PID controller 

 

 

On the other hand, Hybrid Fuzzy PID controller has two parts; conventional PID 

controller and Fuzzy PID controller. The classical PID and Fuzzy PID controllers are 

combined by a blending mechanism that depends on a certain function of actuating error. 

Moreover, an intelligent switching scheme is induced on the blending mechanism that makes 

a decision on the priority of the two controller parts.  Figure 17, shows the Hybrid Fuzzy PID 

controller configuration. 

 

 
Figure 17. Hybrid Fuzzy PID controller 

 

 

3.6 Fuzzy Rules Synthesis 
 

 

In this part, a novel technique will be proposed to synthesize the rule base for the Fuzzy 

Logic (FL) controller or the Fuzzy PID based controller. There are many techniques in 

literature that investigate this problem. However, since Lyapunov based technique provides 
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rules synthesis and stability analysis then it will be used for comparison basis with this 

proposed technique. 

 

3.6.1 Fuzzy Lyapunov Rules Synthesis  

 

For a given control system, stability is usually the most important attribute to be 

determined. The Lyapunov method of stability analysis that was introduced by the Russian 

mathematician A.M. Lyapunov is, in principal, the most general method for determining of 

stability of nonlinear systems as well as linear systems.  

Lyapunov direct method relies on the construction of an energy like positive definite 

function 𝐹, called Lyapunov function with all the desired properties: bounded below (with a 

minimum at the equilibrium), and decreasing along states trajectories (i.e. when the dynamical 

system attains stability it‟s energy levels drop). If such a function is found then stability can 

be inferred, (Abdalla, 2009). 

The strength of the Lyapunov idea lies in the fact that a conclusion about stability can be 

reached without precise knowledge or even being able to compute the trajectories of the 

system (i.e. qualitative analysis). Indeed all we need to establish is that the scalar valued 

Lyapunov function is decreasing along the evolutions of the system. This can be established 

without knowing the solutions by computing the derivative of the Lyapunov function along 

the solutions and check if it is a negative definite function (i.e. energy is dropping), (Abdalla, 

2009). 
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The Lyapunov idea can be extended to the case of fuzzy controllers designed to 

guarantee closed loop stability. Zadeh (1996) proposed the first Fuzzy Lyapunov synthesis 

that is based on transforming classical Lyapunov synthesis from the domain of exact 

mathematical quantities and symbols to the domain of computing with words.  

Fuzzy Lyapunov synthesis followed the classical Lyapunov synthesis method by 

constructing a Lyapunov function candidate 𝐹 and then determining the conditions required to 

make it indeed a Lyapunov function of the closed loop system (that is, Conditions that 

guarantee 
𝑑𝐹

𝑑𝑡
≤ 0). It turns out that, because of assuming fuzzy knowledge about the plant to 

be controlled, the derived conditions can be stated as fuzzy If-Then rules. These fuzzy rules 

constitute the rule base for the fuzzy controller, (Margaliot et al., 1999). 

In this work, the Fuzzy Lyapunov synthesis was used to design a trajectory tracking 

controller. This methodology uses a Lyapunov function candidate to obtain the rules of the 

Mamdani type Fuzzy PID controller, then the rules are implemented to track a desired 

trajectory. The first step is to find a positive definite Lyapunov function, based on the error 

and the derivative change of the error, secondly computing the derivative of that function. 

Now, based on the conditions that guarantee negative definiteness of  
𝑑𝐹

𝑑𝑡
≤ 0 and by noting 

that the second derivative of the error is proportional to the output of the controller, the set of 

fuzzy IF-Then rules may be constructed. In the Fuzzy PID controller application chapter, this 

technique on an elevator application example will be demonstrated. 
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3.6.2 Fuzzy Rules Synthesis via Particle Swarm Optimization (PSO) 

 

Particle Swarm Optimization (PSO) is a population based stochastic optimization 

technique developed by Eberhart and Kennedy (1995), inspired by social behavior of bird 

flocking or fish schooling. 

In PSO, the potential solutions, called particles, fly through the problem solution space 

by following the current optimum particles. A major advantage of PSO is its ability to handle 

optimization problems with multiple local optima reasonably well and its simplicity of 

implementation. Also, it does not require gradient information of the objective function being 

considered, only its values. PSO is proving itself to be an efficient method for several 

optimization problems, and in certain cases it does not suffer from the problems encountered 

by other Evolutionary Computation techniques. PSO has been successfully applied in many 

areas: function optimization, artificial neural network training and fuzzy system control. 

PSO simulates a commonly observed social behavior, where members of a group tend to 

follow the lead of the best of the group. The procedure of PSO is illustrated as following steps, 

(Abdalla, 2009): 

 

i. Initialization: Randomly generate a population of the potential solutions, called 

“particles,” and each particle is assigned a randomized velocity.  

 

ii. Velocity Update: The particles then “fly” through search hyperspace while updating their 

own velocity, which is accomplished by considering its own past flight and those of its 

companions.  
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The particle‟s velocity and position are dynamically updated by the following equations: 

 

                 𝑣𝑖𝑑
𝑁𝐸𝑊 = 𝑤𝑖 . 𝑣𝑖𝑑

𝑂𝐿𝐷 + 𝐶1. 𝑟1.  𝑥𝑝𝑑 − 𝑥𝑖𝑑
𝑂𝐿𝐷 + 𝐶2. 𝑟2.  𝑥𝑔𝑑 − 𝑥𝑖𝑑

𝑂𝐿𝐷           (27) 

 

 

                                               𝑥𝑖𝑑
𝑁𝐸𝑊 = 𝑥𝑖𝑑

𝑂𝐿𝐷 + 𝑣𝑖𝑑
𝑁𝐸𝑊                                               (28) 

 

Where the acceleration coefficients C1 and C2 are two positive constants; wi is an inertia 

weight and r1, r2 are a uniformly generated random numbers within the range [0, 1], which is 

generated every time for each iteration. Eberhart, et al. (2001) and Hu, et al. (2001) suggested 

using C1=C2=2 and wi =0.5+rand/2. Equation (27) shows that, when calculating the new 

velocity for a particle, the previous velocity of the particle (vid), their own best location that 

the particles have discovered previously (xid) and the global best location (xgd) all contribute 

some influence on the outcome of velocity update.  

The global best location (xgd) is to be identified, based on its fitness, as the best particle 

among the population. All particles are then accelerated towards the global best particle as 

well as in the directions of their own best solutions that have been visited previously. While 

approaching the current best particle from different directions in the search space, all particles 

may encounter by chance even better particles in route, and the global best solution will 

eventually emerge. Equation (28) shows how each particle‟s position (xid) is updated in the 

search of solution space.  

To summarize the PSO algorithm a flow chart is provided in Figure 18. The flow chart 

describes the PSO algorithm in an abstract way. 
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Figure 18. Particle Swarm Optimization algorithm 

 

Generating of the knowledge base of a fuzzy rule base system presents several 

difficulties because the knowledge base depends on the nature of application in hand, and this 

makes the accuracy of the fuzzy rule base system directly depends on its composition.  

The usual solution for improving the fuzzy rule base system performance in dealing with 

the data base components involves a tuning process of the preliminary data base definition 

once the rule base has been derived. This process only adjusts the membership function 
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definitions and doesn‟t modify the number of linguistic terms in each fuzzy partition since the 

rule base remains unchanged. The objective of this work is to introduce a method to 

automatically generate the knowledge base of a fuzzy rule base system based on learning 

approach. 

   In the weighted fuzzy rule based system, the rules in its rule base are endued with 

weights which will be optimized by the Particle Swarm Optimization (PSO). These rules 

could be arranged according to their weights; some rules with low weights would be deferred 

or abandoned, while some high weighted rules would be executed firstly. Through ranking the 

weights, the rules could be ranked and get a simplified rule base. Figure 19 illustrates the new 

structure of the Fuzzy controller that will be used. 

The weighted fuzzy rule based system methodology will be further treated and 

demonstrated using an elevator application example in subsequent chapters. 

 

 
Figure 19. The new structure of the Fuzzy Logic controller 
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The output of the Fuzzy Logic (FL) controller is then obtained by the average of the 

weighted firing of the rules as follows: 

 

                                      𝑢∗ =
 𝑤𝑒 𝑖  ×𝜇 𝑖𝑘 ×𝑐𝑖

𝑚
𝑖=1 

 𝑤𝑒 𝑖×𝜇 𝑖𝑘
𝑚
𝑖=1

                                      (29) 

 

Where 𝑤𝑒𝑖  is the weight of the rule. Now, to obtain the parameters of the function of the 

weighted fuzzy rule-base system described in Equation 29, the Particle Swarm Optimization 

(PSO) algorithm can be used to estimate the parameters of the weighted fuzzy rule-based 

system, which include the position and the shape of the membership function, the fuzzy rules 

and its weights. The implementation procedure of Particle Swarm Optimization (PSO) 

Algorithm was shown previously in Figure 18.  

The complete algorithm will be fully illustrated by means of an example in the Fuzzy 

Logic Proportional-Integral-Derivative (FL PID) controller application chapter. 
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CHAPTER 4 
 

 

Fuzzy PID Controller Application 
 

  

 

In this part a functioning Fuzzy PID controller will be designed and simulated to control 

an elevator system. First, the elevator as a test-bed will be introduced, that is a complete 

mathematical model will be adopted and later it will be used for simulation purposes only. 

Secondly, the building blocks of the Fuzzy PID controller will be designed. 

 

4.1 Overview of  Elevators 

 

Elevators may be classified according to their driving method into three categories, 

Ramsey and Sleeper (2007); electric, hydraulic and pneumatic elevators. Hydraulic elevators 

use hydraulic oil driven machine to raise and lower car and its load, however lower speeds and 

piston length (stroke) restricts the use of this type. Electric traction elevators are elevators in 

which the energy is applied by means of an electric driven machine. Medium to high speeds 

and virtually limitless rise allow this elevator type to serve high-rise, medium-rise and low-rise 

buildings. Electric traction elevators can be further divided into geared and gearless categories: 

geared traction elevators designed to operate within the general range of 100 to 450 ft/min, 

restricting their use to medium rise buildings, and gearless traction elevators that available in 

units with speeds of 500 to 1500 ft/min. They offer the advantages of a long life and smooth 

ride, (Ramsey and Sleeper, 2007). 
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Typically, elevator machines are either roped with a single or double wrap arrangement. 

Single wrap arrangement provides traction by the use of grooves that will pinch the ropes with 

varying degrees of pressure depending on the groove‟s shape and it‟s undercutting. The most 

effective single-wrap arrangement gives 180 degrees of the rope contact with the sheave 

without deflecting the sheave. On the other hand, double-wrap arrangement provides greater 

traction than the single wrap arrangement and is used in many automatic high speed 

installations. 

Conventional elevators are either roped as 1:1 or 2:1 rope arrangement for both car and 

counter-weight. A 1:1 roping arrangement gives no mechanical advantage, while 2:1 roping 

permits the use of a high speed, low-power and therefore lower cost traction machine.   

The most popular electrical elevator models based on roping techniques are shown in 

Figure 20. For a complete and thorough discussion of such schemes the reader is directed to 

consult some elevator design based handbook. 

In this work double wrap 2:1 gearless traction elevator will be used as a test-bed for the 

controllers design. 
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Figure 20. The most popular electrical elevator models based on roping techniques 

           a) 1:1 Half wrap           b) 1:1 Full wrap    c) 1:1 Drum winding   

           d) 1:1 Drum winding   e) 2:1 Full wrap     f) 2:1 Half wrap   

           g) 2:1 Half wrap          h) 3:1 Half wrap     i) 4:1 Half wrap 

 

 

The long-life, smoothness and high horsepower of gearless traction elevators provide a 

durable elevator service that can outline the building itself. The first high-rise application of 

gearless traction elevator was in the Beaver building New York City in 1903, which was 

followed by such notable installations such as the singer building which was demolished in 

1972 and the Woolworth buildings, to name few. On higher speed gearless traction machines 

of 4 mps or more, the double wrap principle is generally applied to obtain traction and to 

minimize rope wear. The 2:1 arrangement allows the use of a higher speed, and therefore a 

smaller, but faster elevator. The economy of the faster motor, which can be built smaller and 

lighter than lower speed DC motor, also makes 2:1 roping alternative for a full range of speed 

requirements from 0.5 to 3.5 mps or more and for any lifting capacity. Gearless machines are 
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greatly capable of acceleration rates of 1.2 mps
2
 and can be made to accelerate faster. The 

limiting factor is not the accelerating rate, but the rate of change of acceleration “Jerk” that is 

felt by the riding passenger. This is a matter of personal tolerance, but in general, the upper 

limit of 2.4 mps
3
 is usually the maximum, (Strakosch, 1998).  

A typical speed profile of an elevator car -for the first floor- is shown in Figure 21. The 

speed profile describes the motion status of the car. When a car starts to move, it enters 

acceleration mode until it reaches the contract speed. This speed is maintained up to when the 

car has to stop. Before the car reaches the stop position, it has to slow down for a safe stop at 

the destination floor. Besides the motion status of the car, other useful information given by 

the speed profile includes the time the car takes to reach the contract speed, the time the car 

spends to travel one floor at contract speed, the time taken to decelerate before the car stops, 

the distance traveled to reach the contract speed and the distance traveled to slow down from 

the contract speed before the car stops. 
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Figure 21. Typical speed profile for an elevator system 

 

4.2 Elevator Modeling 
 

 

Modeling is the process of formulating mathematical equations, which are used to 

describe the system‟s dynamical behavior. It involves identifying the system elements, inputs 

and outputs, the physical mechanisms and laws governing the behavior of these elements.  

In this work the controller‟s design will be verified using computer simulations. All 

simulation results in this work are based on the double wrap 2:1 gearless electric (DC) traction 

elevator physical model that is depicted in Figure 22. Some assumptions were made in the 

development of this model; the hoisting ropes are mass-less, the dynamics of the 

compensating and the governor roping are ignored and the break system is excluded from the 

model; that is the motor will breakdown the system. 

A summary of the ODE of the elevator mathematical model is provided here as a reference 

(Boutler, 2000): 
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𝑖𝑎 =
𝑉𝑖𝑛

𝐿𝑎
−

𝑅𝑎

𝐿𝑎
−

𝐾𝑏

𝐿𝑎
𝑥 2                                                                                                     (30) 

𝑥 2 =
𝑅2

𝐽2
 𝑇3 − 𝑇2 + 𝐾𝑚 𝑖𝑎                                                                                                   (31) 

𝑥 1 =
𝑅1

2𝐾𝐸𝐿

2𝐽1
 𝑥𝐸𝐿 − 𝑥1 +

𝑅1
2𝐵𝐸𝐿

2𝐽1
 𝑥 1 − 𝑥 𝐸𝐿 +  𝑋0𝐾0 + 𝑇2 

𝑅1
2

2𝐽1
                                     (32) 

𝑥 𝐸𝐿 =
𝐾𝐸𝐿

𝑀𝐸𝐿
 𝑥1 − 𝑥𝐸𝐿 +

𝐵𝐸𝐿

𝑀𝐸𝐿
 𝑥 1 − 𝑥 𝐸𝐿                                                                            (33) 

𝑥 𝐶𝑊 =
𝐾𝐶𝑊

𝑀𝐶𝑊
 𝑥3 − 𝑥𝐶𝑊 +

𝐵𝐶𝑊

𝑀𝐶𝑊
 𝑥 3 − 𝑥 𝐶𝑊                                                                      (34) 

𝑥 3 =
𝐾𝐶𝑊 𝑅3

2

2𝐽3
 𝑥𝐶𝑊 − 𝑥3 +

𝐵𝐶𝑊 𝑅3
2

2𝐽3
 𝑥 𝐶𝑊 − 𝑥 3 +  𝑇3 + 𝑇2 

𝑅3
2

2𝐽3
                                     (35) 

 

Where 𝑖𝑎  is the armature current, 𝑉𝑖𝑛  is the armature voltage, 𝑅𝑎  is the armature resistance, 𝐿𝑎  is 

the armature inductance, 𝐾𝑏  is the voltage constant, 𝑥2 is the drive sheave position, 𝑥1 is the 

elevator sheave position, 𝑥𝐸𝐿is the elevator car position, 𝑥3 is the counter weight sheave 

position, 𝑥𝐶𝑊  is the counter weight position, 𝐾𝐶𝑊  is the stiffness factor for the counter weight, 

𝐾𝐸𝐿  is the stiffness factor for the elevator car, 𝐵𝐸𝐿 is the damping coefficient for the elevator 

car, 𝐵𝐶𝑊 is the damping coefficient for the counter weight, 𝑇𝑖  is the tension, 𝑉𝑖  is the speed, 𝐻𝑖  

is the height, 𝜏𝑚  is the motor torque, 𝐽1 is the moment of inertia for the elevator sheave, 𝐽2 is the 

moment of inertia for the drive sheave, 𝐽3 is the moment of inertia for the counter weight 

sheave, 𝑅1 is the radius for the elevator sheave, 𝑅2 is the radius for the drive sheave, 𝑅3 is the 

Mass for the counter weight sheave, 𝑀𝐸𝐿  is the mass for the elevator car and 𝑀𝐶𝑊  is the mass 

for the counter weight. 

The elevator system‟s model will be simulated using Simulink / Matlab for testing the 

designed controllers. A switching technology through Pulse Width Modulation (PWM) and a 

universal bridge is used for enabling speed regulation of the PMDC motor system. Figure 23 
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depicts the closed loop system (feedback) of the major blocks, while Figures 24 and 25 illustrate 

the details of the subsystems. The speed profile is given as an input for the controller in addition 

to the desired height (floor level). 

 
 

Figure 22. The double wrap gearless traction elevator physical model 
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Figure 23. Elevator‟s speed control closed loop system 
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Figure 24. Elevator‟s internal subsystems 

 

 

 

 

Figure 25. Permanent Magnet Direct Current (PMDC) motor subsystem 
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4.3 Elevator Fuzzy PID Controller Design 

 

The Fuzzy PID controller will directly replace the conventional PID controller in the 

closed loop system. However, all the flexibility and high performance of the fuzzy portion 

will enhance the capabilities of the PID controller and it will enrich its trajectories space. 

Figure 26 depicts the closed loop system with the proposed Fuzzy PID controller in the 

forward path. 

 
Figure 26. Fuzzy PID controller loop 

 

The proposed direct action Fuzzy PID controller is depicted in Figure 27. The integral 

parameter (Ki) is chosen using numerical optimization. The other part of the Fuzzy PID 

controller is the PD, which is implemented using pure Fuzzy Logic (FL) techniques. The 

major steps in the Fuzzy PID design constitutes creating a knowledge base of the rules (rule 

base and inference), establishing membership functions for  the inputs ( fuzzification ) and 

implementing member functions for the outputs  ( defuzzification ).  
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Figure 27. Proposed Fuzzy PID controller   

 

In this work the sensed input signals that are fed to the Fuzzy PID controller are the 

error and the rate of change of the error ( 𝑒(𝑡),𝑒  𝑡  ). 

                                              𝑒 𝑡 = 𝑉𝑑 𝑡 − 𝑉(𝑡)                                                 (36) 

Where 𝑉𝑑 𝑡  is the reference speed (speed profile), and 𝑉 𝑡  is the elevator‟s actual speed. 

Typical speed profile that we have adopted is illustrated in Figure 28. 

 
Figure 28. The speed profile for an elevator system 
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4.3.1 Lyapunov Fuzzy PID Controller Design 
 

 

During recent years considerable efforts have been devoted to guarantee the stability of 

the Fuzzy Logic controller. Several stability analysis methods have been established, and 

stable control designs have been introduced, (Woo et. al, 2007), (Tanaka et al., 2003), (Tanaka 

et al., 2007), (Yeh et al., 2008) and (Chen et al., 2006). The fuzzy Lyapunov function 

approach has been proposed to guarantee the stability of the Fuzzy Logic controller. 

To illustrate the Lyapunov based Fuzzy Logic PID controller, the control of an elevator 

system will be considered. Typically, the three stages of the Fuzzy Logic (FL) controller 

(illustrated in Figure 29) will be presented as follows 

 

 
 

Figure 29. The three stages of the Fuzzy Logic controller 

 

Fuzzification: The membership function is a graphical representation of the magnitude of 

participation of each input. There are different membership functions associated with each 

input and output response. In this work, both triangular and trapezoidal membership functions 

for inputs and output variables were used due to their simplicity and effectiveness of 

implication. The number of membership functions, to some extent, determines the quality of 
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control, that can be achieved using the Fuzzy Logic controller. As the number of membership 

functions increase to a certain limit, the quality of control may reach Platue.  

The membership functions for the two inputs, namely the error 𝑒(𝑡)and the rate of change of 

the error 𝑒 (𝑡), and the output 𝑢(𝑡), namely the reference voltage for the discrete PWM 

generator, are shown in Figure 30. Seven linguistic variables were selected to span the whole 

input/output range, which are fully defined and their ranges of the linguistic variables set as 

shown in Table 3. 

   

(a)                                                                     (b) 

 

 
(c) 

 

Figure 30. The membership functions (Lyapunov based) (a) membership functions for the error      

(b) membership functions for the change of error (c) membership functions for the 

reference voltage for the discrete PWM generator. 
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Table 3. Membership functions liguistic variables ranges 

Variable Linguistic variable Range 

 

 

 

𝒆(t) 

Negative Big (NB) [-10  -10  -2.2  -1.3] 

Negative Medium (NM) [-1.9  -1.1  -0.25] 

Negative Small (NS) [-0.7  -0.3  0] 

Zero (ZE) [-0.17  0  0.17] 

Positive Small (PS) [-0.17  0  0.17] 

Positive Medium (PM) [-0.17  0  0.17] 

Positive Big (PB) [1.4 2  10  10] 

 

 

 

𝒆 (t) 

Negative Big (NB) [-0.1  -0.1  -0.02  -0.01] 

Negative Medium (NM) [-0.02  -0.01  -0.003] 

Negative Small (NS) [-0.007  -0.003  0] 

Zero (ZE) [-0.002  0  0.002] 

Positive Small (PS) [0  0.003  0.007] 

Positive Medium (PM) [0.002  0.01  0.02] 

Positive Big (PB) [0.01  0.02  0.1  0.1] 

 

 

 

𝒖(t) 

Negative Big (NB) [-1000  -1000  -634  -522] 

Negative Medium (NM) [-578  -356  -133] 

Negative Small (NS) [-222  -111  0] 

Zero (ZE) [-56  0  56] 

Positive Small (PS) [0  111  222] 

Positive Medium (PM) [133  355  588] 

Positive Big (PB) [522  634  1000  1000] 

 

Rule base: The main part of the Fuzzy PID controller is the rule base and the inference 

mechanism. The rule base is normally expressed in a set of fuzzy linguistic rules, with each 

rule triggered (fired) with varying belief for support.The i
th

 linguistic control rule can be 

expressed as:                                 Ri: If ei is Ai and dei is bi then ui is Ci, 
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Where Ai, Bi and Ci are fuzzy variables (sets) characterized by fuzzy membership functions. 

In this work, the fuzzy Lyapunov synthesis was used to design a trajectory tracking 

controller. This methodology uses a Lyapunov function candidate to obtain the rules of the 

Mamdani-type Fuzzy Logic controller, which are later implemented to track a user‟s 

trajectory. Here, a continuously differentiable function 𝐹 𝑥 , 𝑥 = [𝑒 𝑒 ]𝑇will be referred as a 

Lyapunov function if the following requirements are met: 

i. 𝐹 𝑥 = 0, for only 𝑥=0, 

ii. 𝐹 𝑥 > 0, 𝑥 ∈ 𝑅2 − {0}, 

iii. 
𝑑𝐹

𝑑𝑡
< 0, 𝑥 ∈ 𝑅2 − {0}, 

were  𝑅2 − {0}  is some neighborhood of zero excluding the origin itself.  

Assuming that the reference speed 𝑉𝑑  and its derivatives 𝑉 
𝑑  and 𝑉 

𝑑  are bounded and 

available to the controller, let‟s choose 𝐹(𝑥) as Lyapunov function of a quadratic form: 

 

                                                       𝐹(𝑥) =
1

2
 𝑒2(𝑡) + 𝑒 2(𝑡)                                (37) 

 

 Where the error is given as: 

                                                       𝑒 𝑡 = 𝑉𝑑 𝑡 − 𝑉 𝑡                                       (38) 

 

 It is obvious that conditions i and ii hold for the proposed 𝐹 𝑥  and the only need is to check 

condition iii to verify stability. Hence, the derivative of the Lyapunov function yields 

 

                                              𝐹 (𝑥) = 𝑒 (𝑡)(𝑒 𝑡 + 𝑒  𝑡 )                                      (39) 
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As the second derivative of error proportional to the output of the FL controller (u), then     

                                               𝐹 (𝑥) = 𝑒 (𝑡) 𝑒(𝑡) + 𝑢(𝑡)                                            (40)                                                                                                                                                                                                             

The corresponding requirement of Lyapunov stability becomes  

                                           𝐹 (𝑥) = 𝑒 (𝑡)(𝑒(𝑡) + 𝑢(𝑡)) < 0                                    (41) 

Consequently one may draw conclusions from three possible combinations depending on the 

sign of the error: 

 Case 1: If 𝑒(𝑡) and 𝑒 (𝑡) are both positive then 𝑢(𝑡) < −𝑒(t) 

 Case 2: If 𝑒 𝑡  and 𝑒 (𝑡)  are both negative then 𝑢(𝑡) > −𝑒(𝑡) 

 Case 3: If 𝑒(𝑡) and 𝑒 (𝑡) have opposite signs then 𝑢(𝑡) = 0 

Consequently, these combinations may be used to generate the fuzzy rules that are illustrated 

in Table 4.               

                                 Table 4. Lyapunov based FL PID controller rules 

    e 
NB NM NS ZE PS PM PB 

NB 

 

PB PB PB PB PM PS PS 

NM 

 

PB PB PB PB PB PM PM 

NS 

 

PB PB PB PB PB PB PB 

ZE 

 

PB PM PB ZE NB NM NB 

PS 

 

NB NB NB NB NB NB NB 

PM 

 

NM NM NB NB NB NB NB 

PB NS NS NM NB NB NB NB 

 

       

 

𝑒  
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The generated Lyapunov based Fuzzy Logic PID controller surface is shown in Figure 

31. Typically, a control surface is a plot that shows the controller‟s control signal as a function 

of controller‟s inputs, which provides a sense of the controller‟s trajectories for a two input 

based systems. In this case, this plot shows the control signals (reference voltage for the 

discrete PWM generator) as a function of the error and the rate of change of the error. 

Figure 31. Lyapunov based Fuzzy PID controller control surface 

 

Defuzzification: According to real world requirements, the linguistic variables have to be 

transformed to crisp outputs in order to be utilized by the actuator. Classical centre of gravity 

method is one of the best known defuzzification methods and it will be used in this work. 

 

                                  𝑢∗ =
 𝜇 𝑖𝑘 ×𝑐𝑖

𝑚
𝑖=1

 𝜇 𝑖𝑘
𝑚
𝑖=1

                                          (42) 

 

A
ll 

R
ig

ht
s 

R
es

er
ve

d 
- 

L
ib

ra
ry

 o
f 

U
ni

ve
rs

ity
 o

f 
Jo

rd
an

 -
 C

en
te

r 
 o

f 
T

he
si

s 
D

ep
os

it



www.manaraa.com

62 

 

Where 𝜇𝑖𝑘  denotes the degree that instance matches the rule 𝑅𝑖  , and 𝑐𝑖  𝜖 { C1, …. CM} is the 

centroid of every fuzzy set.  

 

4.3.2 PSO Based Fuzzy PID Controller Design 

 

To illustrate the Particle Swarm Optimization (PSO) based Fuzzy Logic PID controller 

design we will consider the control of an elevator system. In this design methodology one 

should first generate the rule base (stage II) based on optimization binary PSO search then the 

fuzzification stage (stage I) will be implemented. This is counter intitutive and differs from 

classical Fuzzy Logic controller design. The reason behind this is the fact that we do not have 

off hand all the linguistic variables, instead they are generated by the PSO search results. So 

let‟s shed more light on rule base auto-generation.  

        

Rule base: Traditionally, the construction of Fuzzy Logic controller, rules has been mainly 

based on the operator‟s control experience or actions. Unfortunately, acquiring rules from 

experts is not an easy task, moreover it is very difficult for a knowledge engineer to extract 

rules from static data bases (data mining). On the other hand, selecting a set of important 

fuzzy rules from a given rule base is an important issue in fuzzy rule base modeling. Even 

though it is conceivable that eliminating redundant or less important fuzzy rules from the rule 

base can result in a compact fuzzy model with better generalizing ability, the decision as to 

which rules are redundant or less important is also not an easy task.  

In this work, the Particle Swarm Optimization (PSO) binary search algorithm is applied 

in two stages; in the first stage the PSO algorithm is used for generating a firsthand optimal 
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decision learning rules while in the second stage it is used for obtaining a simplified set of 

rules that is generated from the first stage. Detailed descriptions of these two stages are given 

as follows:  

First stage: The fuzzy decision rules of the Fuzzy Logic PID controller are not established 

by expert knowledge or operator‟s experience but instead are constructed using the PSO 

binary search algorithm. 

 The technique over the previously discussed elevator system application will be 

demonstrated. The elevator‟s proposed Fuzzy Logic PID controller has two inputs and one 

output, the inputs are the error and the rate of change of the error, the output is the reference 

voltage for the discrete PWM generator. Assuming, each input to have seven linguistic 

variables (NB, NM, NS, ZE, PS, PM and PB), accordingly, the number of rules generated is 

49 (7x7) rules. Consequently, Figure 32 describes one rule (Ri) output, which means a rule 

might have seven possible outcomes for a control action (i.e. the output of the controller); 

Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero (ZE), Positive Small 

(PS), Positive Medium (PM) and Positive Big (PB). An optimal outcome for the control 

action will be determined for each rule of the 49 rules by using the PSO binary search 

algorithm. 
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Figure 32. FL PID one rule outcome possibilities 

 

To minimize the huge number of tuning parameters, the PSO algorithm is applied based 

on a binary approach (i.e. either the rule is applied or not). In this methodology the PSO 

algorithm will have 49 Parameters to be optimized, each parameter is taken as a decimal 

number and is converted into a seven digits binary number that constructs a set of weights [w 

(i, 1), w (i, 2), w (i, 3), w (i, 4), w (i, 5), w (i, 6), w (i, 7)] which may be described as a matrix 

as follows: 

 
 
 
 
 
 
𝑃1

𝑃2

𝑃3

.

.
𝑃49 

 
 
 
 
 

 →  

 
 
 
 
 
 

𝑤 1,1 , 𝑤 1,2 , 𝑤 1,3 , 𝑤 1,4 , 𝑤 1,5 , 𝑤 1,6 , 𝑤 1,7 

𝑤 2,1 , 𝑤 2,2 , 𝑤 2,3 , 𝑤 2,4 , 𝑤 2,5 , 𝑤 2,6 , 𝑤 2,7 

𝑤 3,1 , 𝑤 3,2 , 𝑤 3,3 , 𝑤 3,4 , 𝑤 3,5 , 𝑤 3,6 , 𝑤 3,7 
.
.

𝑤 49,1 , 𝑤 49,2 , 𝑤 49,3 , 𝑤 49,4 , 𝑤 49,5 , 𝑤 49,6 , 𝑤 49,7  
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Where 𝑃𝑖  is the PSO i
th

 rule with seven possible outcomes. This set of weights is then 

implemented to each possible rule as shown in Figure 32. Consequently, the set of weights for 

each rule will have seven cases; 

 [1 0 0 0 0 0 0], in this case the i
th

 rule optimal output for the controller will be NB. 

 [0 1 0 0 0 0 0], in this case the i
th

 rule optimal output for the controller will be NM. 

 [0 0 1 0 0 0 0], in this case the i
th

 rule optimal output for the controller will be NS. 

 [0 0 0 1 0 0 0], in this case the i
th

 rule optimal output for the controller will be ZE. 

 [0 0 0 0 1 0 0], in this case the i
th

 rule optimal output for the controller will be PS. 

 [0 0 0 0 0 1 0], in this case the i
th

 rule optimal output for the controller will be PM. 

 [0 0 0 0 0 0 1], in this case the i
th

 rule optimal output for the controller will be PB. 

 

The optimal PSO parameters recommend list after the first stage is summarized in Table 5. 

These generated controller‟s optimal output outcomes mimics the system‟s operators best 

reaction experiences for the designated inputs.  
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Table 5. PSO based FL PID controller rules (First stage) 

    e 
NB NM NS ZE PS PM PB 

NB 

 

PB PM PM PB PS PS PB 

NM 

 

PB PB PM PB PM PM PB 

NS 

 

PM PB PM PB PM PB PM 

ZE 

 

PB PM PS ZE NS NM NB 

PS 

 

NB NB NM NB NM NM NB 

PM 

 

NS NM NM NB NM NB NM 

PB NS NM NS NB NM NB NB 

 

       

 

 

Second stage: The first stage screening of the controller‟s rules output was selected based 

on fixed set of input linguistic variables. In the second stage, the most significant input 

linguistic variables will be kept (i.e. the ones that contribute the most for the system‟s 

response or the most influential). In order to find those influential linguistic variables rules 

combination, a weighted fuzzy rule base is proposed. Again the PSO search algorithm will be 

used to tune these weights.  

In the weighted fuzzy rule based system, every rule has a weight (number between zero 

and one). These rules could be arranged according to their weights; the rules with low weights 

would be deferred or abandoned, while the high weighted rules would be the most influential 

during excution. Through ranking the weights, the rules could be ranked to get a simplified 

rule base from the most important ones.  

𝑒  
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After applying the first stage, the optimum set of rules (49 rules) was generated using 

the PSO algorithm. In order to reduce this number of rules, the PSO algorithm is implemented 

to get a simplified set of rules. Figure 33 illustrates the new structure of the weighted Fuzzy 

Logic controller that will be used. 

 

 
Figure 33. Weighted Fuzzy Logic controller 

 

 

As illustrated in Figure 33, every rule has a weight that will be optimized using the PSO 

algorithm. In this methodology the PSO algorithm will have 49 parameters to be optimized, 

each parameter represents the weight of each rule.  

After applying the second stage the number of rules reduced from (49) rules to (21) 

rules, as summarized in Table 6. 
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                     Table 6. PSO based FL PID controller rules 

     E NS ZE PS 

NB 

 

PM PB PS 

NM 

 

PM PB PM 

NS 

 

PM PB PM 

ZE 

 

PS ZE NS 

PS 

 

NM NB NM 

PM 

 

NM NB NM 

PB NS NB NM 

 

 

Clearly, the linguistic variables of the error reduced from seven linguistic variables to 

three linguistic variables. The corresponding set of weights of these rules given by the PSO 

algorithm is enlisted in Table 7. Note that since this elevator application is more sensitive to 

the rate of change of the error (i.e. speed profile change); the 𝑒 (𝑡) linguistic variables are 

highlighted (fine), while the error in speed is taken as a coarse distribution (i.e. No need for 

large speed deviations). Also, note how the PSO generated weights about the ZE column of 

the error 𝑒(𝑡) were the largest. That is actually expected because fine tuning is performed by 

the controller in that region (high sensitivity).   

 

 

 

 

 

 

 

𝑒  
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                Table 7. The set of weights given by PSO algorithm 

weight Value 

𝑤1 0.6238 

𝑤2 0.8518 

𝑤3 0.6069 

𝑤4 0.6193 

𝑤5 0.8967 

𝑤6 0.5895 

𝑤7 0.5948 

𝑤8 1.000 

𝑤9 0.5864 

𝑤10 0.2994 

𝑤11 1.000 

𝑤12 0.3128 

𝑤13 0.5912 

𝑤14 1.000 

𝑤15 0.5834 

𝑤16 0.6374 

𝑤17 0.8822 

𝑤18 0.5692 

𝑤19 0.6102 

𝑤20 0.8275 

𝑤21 0.5934 

 

 

The generated PSO based Fuzzy Logic PID controller control surface is presented in 

Figure 34. The control surface demonstrates the controller‟s control signal as a function of 

controller‟s inputs, which provides a sense of the controller‟s trajectories for a two input based 

systems. In this case, this plot shows the control signals (reference voltage for the discrete 

PWM generator) as a function of the error and the rate of change of the error. Clearly the all 

trajectories are directed towards the origin, which gives an indication of the controller‟s 

stability. 
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Figure 34. PSO based Fuzzy Logic PID controller control surface 

 

Now that the rule base is constructed the rest of the controller‟s stages are designed 

accordingly. 

 

Fuzzification: The membership function is a graphical representation of the magnitude of 

participation of each input. There are different membership functions associated with each 

input and output response. In this work, both triangular and trapezoidal membership functions 

for inputs and output variables were used due to their simplicity and effectiveness of 

implementation. The number of membership functions, to some extent, determines the quality 

of control that can be achieved using the fuzzy controller.  

The elevator‟s system proposed Fuzzy Logic PID controller has two inputs, namely the 

error 𝑒 𝑡 and the rate of change of the error 𝑒 (𝑡), and one output 𝑢(𝑡), namely the reference 
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voltage for the discrete PWM generator, seven linguistic variables were tentatively selected to 

span the two inputs and the output ranges; Negative Big (NB), Negative Medium (NM), 

Negative Small (NS), Zero (ZE), Positive Small (PS), Positive Medium (PM) and Positive Big 

(PB).  

As a result of applying the two screening stages of the PSO algorithm, the seven 

linguistic variables for the first input of the Fuzzy PID controller (𝑒 𝑡 ) were reduced to three 

linguistic variables while the number of linguistic variables for the second input (𝑒  𝑡 ) and 

the output of the Fuzzy PID controller are not changed.  

The corresponding membership functions for the two inputs and the output of the Fuzzy 

Logic PID controller are shown in Figure 35, while the ranges of the linguistic variables set 

are summarized in Table 8. 
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(a)                                                                     (b) 

 

 
(c) 

 

     Figure 35. PSO generated membership functions (a) membership functions for the error       

(b) membership functions for the change of error (c) membership functions for the     

reference voltage for the discrete PWM generator. 
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Table 8. Membership functions liguistic variables ranges 

Variable Linguistic variable Range 

 

𝒆(t) 

Negative Small (NS) [-10  -10  -3  -0.34] 

Zero (ZE) [-1.7  0  1.7] 

Positive Small (PS) [0.34  3  10  10] 

 

 

 

𝒆 (t) 

Negative Big (NB) [-0.1  -0.1  -0.02  -0.01] 

Negative Medium (NM) [-0.02  -0.01  -0.003] 

Negative Small (NS) [-0.007  -0.003  0] 

Zero (ZE) [-0.002  0  0.002] 

Positive Small (PS) [0  0.003  0.007] 

Positive Medium (PM) [0.002  0.01  0.02] 

Positive Big (PB) [0.01  0.02  0.1  0.1] 

 

 

 

𝒖(t) 

Negative Big (NB) [-1000  -1000  -634  -522] 

Negative Medium (NM) [-578  -356  -133] 

Negative Small (NS) [-222  -111  0] 

Zero (ZE) [-56  0  56] 

Positive Small (PS) [0  111  222] 

Positive Medium (PM) [133  355  588] 

Positive Big (PB) [522  634  1000  1000] 

 

                

Defuzzification: According to real world requirements, the linguistic variables have to be 

transformed to crisp outputs in order to be utilized by the actuator. A weighted centre of gravity 

method will be used in this work 

 

                                      𝑢∗ =
 𝑤𝑒 𝑖  ×𝜇 𝑖𝑘 ×𝑐𝑖

𝑚
𝑖=1 

 𝑤𝑒 𝑖×𝜇 𝑖𝑘
𝑚
𝑖=1

                                      (42) 

 

Where 𝑤𝑒𝑖  is the weight of rule, 𝜇𝑖𝑘  denotes the degree that instance matches the rule 𝑅𝑖  , and 

𝑐𝑖  𝜖 { C1, …. CM} is the centroid of every fuzzy set.  

This completes the design of the FL PID controller. The closed loop system (i.e. system and 

controller) response will be presented in the subsequent chapter.  
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CHAPTER 5 
 

 

Simulating Results and Conclusions 
 

 

 

In the previous chapters, a novel approach for designing a FL PID controller has been 

proposed. The design methodology was based on using an optimization algorithm to infer the 

FL rule base directly from the system without human experience intervention. In addition to 

that the FL controller rule base was also optimized in another pass to minimize the number of 

rules that is used. Now, this design methodology was verified against Lyapunov based rules 

extraction techniques, both techniques were setup and implemented to devise a FL PID 

controller for an elevator system. In this chapter the proposed methodology will be validated 

through numerical simulations, and results will be compared against the well established 

Lyapunov technique. 

Now, to test the effectiveness of the Fuzzy PID controller in contrast to the Fuzzy Logic 

(FL) and the classical PID controller, Matlab computer simulations have been used for an 

elevator system test-bed. The parameters that were used for the 2:1 gearless elevator are fully 

summarized in Table 9. By noting that, the complete controllers‟ designs were introduced 

previously. Hence, this chapter will only provide the numerical results with some discussions 

and conclusions. 
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Table 9. Elevator system physical parameters 

Armature resistance (Ra) 0.49 Ω 

Armature inductance (La) 4.3 mH 

motorarmature constant (Km) 0.49 

Coulomb friction value (Offset)(tf) 0.18 

Coefficient of viscous friction(Gain(Kf) 4.6e-4 

Radius 1 (R1) 0.2 m 

Radius2  (R2) 0.3 m 

Radius3 (R3) 0.2 m 

Moment of inertia (J1) 0.08 Kg.m
2
 

Moment of inertia (J2) 0.15 Kg.m
2
 

Moment of inertia (J3) 0.08 Kg.m
2
 

Mass of the elevator (MEL) 100<MEL<500 Kg 

Mass of the weight (MCW) 100 Kg 

 

 

5.1 Elevator‟s System Response 
 

 

In this work, the proposed controllers‟ effectiveness will be demonstrated on performing 

two user calls. One call is make the elevator climb to the first floor while the other is to reach 

the tenth floor, or to reach four and fourty meters heights, respectively. 

To validate the controller‟s ability to generate proper control laws that will track a 

designer‟s velocity profile, the results of traditionally used controllers have been compared. 

The traditional PID controller was fully tuned and optimized to control the elevator system, in 

order to carry out a fair comparison. On the other hand, a classical pure FL based controller 

was established and optimized to control the elevator‟s system as well. The used performance 

criteria will be based on the following merits:   

1. Controller‟s ability to track the designers speed profile for each floor. 
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2. Controller‟s ability to take the cart to the user‟s designated destination accurately. 

3. Controller‟s smoothness in operating the elevator‟s cart, which will be indicated using the 

cart‟s acceleration and jerk. 

 

Now, since concrete grounds have been established for comparison the standards that 

will be used to quantify these measures will be based on published ASHREA 

recommendations. According to Strakosch (1998), The recommended upper limits for the 

acceleration and the jerk are 1.2 mps
2
 and 2.4 mps

3
 respectively, while for the speed and 

position tracking, the following standard cost functions will be used 

i. The Integral Absolute of the Error (IAE)  

 

                                                    𝐼𝐴𝐸 = ∫  𝑒(𝑡) 𝑑𝑡
𝑡𝑓

0
                                                 (44) 

 

Where 𝑒(𝑡) is the deviation from the designer‟s speed profile for each floor. 

 

ii. The Integral Square of the Error (ISE)  

 

                                                    𝐼𝑆𝐸 = ∫ 𝑒2 𝑡 𝑑𝑡
𝑡𝑓

0
                                                   (45) 

 

iii. The Integral Time Absolute of the Error (ITAE) 

 
 

                                        𝐼𝑇𝐴𝐸 = ∫ 𝑡 𝑒(𝑡) 
𝑡𝑓

0
𝑑𝑡                                             (47) 

 

Noting that traditionally used measures of the system‟s performance, such as: rise time, 

overshoot, steady state error …etc. are all implemented within these measures. 
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Classical PID controller: A well establish standard Proportional, Integral and Derivative 

(PID) controller is used to validate the work of the FL controllers. The PID controller has 

demonstrated a successful long running journey in the industrial applications for the past sixty 

years. It‟s popularity is mainly due to its fixed structure and easiness of utilization yet 

effectiveness of performance. It‟s design is simply done by tuning it‟s parameters 𝐾𝑃 , 𝐾𝐼 and 

𝐾𝐷. In this work, the PSO based optimization techniques have been used to fully tune the PID 

controller‟s parameters to generate superb performance. The PID controller‟s performance is 

full captured through the Figures 36 and 37. 

 

   

Figure 36. Classical PID system responses, a) Position at 4m height, b) Reference speed vs. actual speed for 4m height,   

c) Acceleration for 4m height, d) Jerk at 4m height 
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Figure 37. Classical PID system responses, a) Position at 40 m height   b) Reference speed vs. actual speed for 40 m 

height    c) Acceleration for 40 m height   d) Jerk at 40 m height 

 

 

Classical FL controller: The previously designed FL controller with the 49 rules was tested 

to operate the elevator test-bed for the first and tenth floor calls. Figures 38 and 39, 

demonstrate the FL controller responses, where tracking the speed and position are done 

nicely, with minimal amount of acceleration and jerk for the two executed scenarios. Please 

note that the rules that are used in this Classical FL controller design are based on trial and 

error and gained human experience. 
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Figure 38. Classical FL controller system responses, a) Position at 4m height   b) Reference speed vs. actual 

speed for 4m height c) Acceleration for 4m height   d) Jerk at 4m height 

 

 

Figure 39. Classical FL controller system responses, a) Position at 40 m height   b) Reference speed vs. actual 

speed for 40 m height c) Acceleration for 40 m height   d) Jerk at 40 m height 
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PSO Optimized FL PID controller: The previously designed controller with 21 rules was 

tested for first and tenth floor calls for the elevator. Figures 40 and 41 depicts the position, 

velocity, acceleration and jerk trajectories for the first and tenth floors user calls, respectively. 

The controller‟s ability to track the designer‟s speed profile is evident (i.e. total match) 

for the two scenarios. Also, the acceleration and jerk values are within human tolerated 

values. Finally, the elevator‟s ability to track the user‟s call is depicted in reaching the desired 

positions accurately.      

   

Figure 40. PSO FL PID system responses a) Position at 4 m height   b) Reference speed vs. actual speed for  

                4m height c) Acceleration for 4 m height   d) Jerk at 4 m height 
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Figure 41. PSO FL PID system response,  a) Position at 40 m height   b) Reference speed vs. actual speed for 

40 m height c) Acceleration for 40 m height   d) Jerk at 40 m height 

 

 

Now that the results of the three controllers are presented, they should be compared 

collectively. Figures 42-47 and Tables 10 and 11, summarizes the comparison of the speed 

profile tracking for the first and tenth floors user requests. The FL PID controller 

demonstrates superiority in both cases. Also, the ITAE comparisons show that the FL PID 

controller actions to be somewhat faster (i.e. because it is penalized over time). Please note 

that the Lyapunov FL controller is enlisted in the table for the sake of completeness in 

comparison, however, it‟s figures is not included because it was very similar to the FL 

controllers. 
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Finally, one major advantage for the FL controllers is the fact that one may incorporate 

artificial intelligence in the controllers rule base and that is something cannot be done directly 

in the PID controller and this mainly due to the PID‟s controller fixed structure.  

 

Table 10. Cost functions for the controllers at 4m height 

Controller ISE IAE ITAE 

PID 8.012e-005 0.02204 0.1069 

FLC 1.701e-005 0.01037 0.05161 

Lyapunov-FL-PID 1.088e-008 0.0002618 0.001154 

PSO-FL-PID 1.546e-10 3.316e-5 
0.0001475 

 

 

 

Table 11. Cost functions for the controllers at 40m height 

Controller ISE IAE ITAE 

PID 0.0001099 0.03416 0.3159 

FLC 7.282e-005 0.03333 0.3149 

Lyapunov-FL-PID 4.76e-007 0.002643 0.02452 

PSO-FL-PID 1.239e-9 0.0001341 
0.001125 
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Figure 42. Integral square of error for 4m and 40m height 

 

 

Figure 43. Integral absolute of error for 4m and 40m height 
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Figure 44. Integral time absolute of error for 4m and 40m height 

 

5.2 Conclusions 

 

A novel methodology for Fuzzy Logic controller design is proposed. The method shows 

how to generate the output outcomes in a Fuzzy Logic controller rule base without human 

experience intervention, as a first optimal screening. Also, the method optimizes the number 

of linguistic variables that are used in the fuzzification and output stages in order to simplify 

the fuzzy rules generated from the first optimal screening, as a second optimal screening. The 

method utilizes a binary search optimization algorithm for the optimal screening that is based 

on Particle Swarm Optimization.  

A FL- PID controller was devised and successfully tested, verified and validated over a 

gearless traction elevator system via simulations. The proposed technique has shown 
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promising results in auto-generation of the rules for the FL-PID controller. The results then 

compared with optimized classical PID controller and classical FL controller. The optimized 

FL-PID proposed in this work showed superiority in controlling an elevator system based on 

control standards.  

Also, the proposed method generated rules were further compared with Lyapunov based 

Fuzzy Logic controller design methodology and the proposed method showed superiority 

based on control standards. 

Finally, different scenarios of the elevator application problem all of it proved the FL-

PID controller ability to track position and speed profile yet maintaining minimal amount of 

acceleration and jerk. 

Furthermore practical testing beyond simulation of this design methodology is 

recommended. Hence, a good future work may be to implement such a designed controller to 

control an elevator prototype in a laboratory environment. Also, other types of applications 

may take the advantage of this design methodology because it is not application dependent. 

On the other hand, stability analysis of the proposed controller based on Lyapunov direct 

method is a good future work too.  
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